In the simulations below, we generate data from a number of
different oracle precision matrices with various structures. For each
data-generating procedure, the ADMMsigma()
function was run
using 5-fold cross validation. After 20 replications, the cross
validation errors were totalled and the optimal tuning parameters were
selected (results below the top figure). These results are compared with
the Kullback Leibler (KL) losses between the estimates and the oracle
precision matrix (bottom figure).
We can see below that our cross validation procedure consistently chooses tuning parameters that are close to the optimal parameters with respsect to the oracle.
# oracle precision matrix
Omega = matrix(0.9, ncol = 100, nrow = 100)
diag(Omega = 1)
# generate covariance matrix
S = qr.solve(Omega)
# generate data
Z = matrix(rnorm(100*50), nrow = 50, ncol = 100)
out = eigen(S, symmetric = TRUE)
S.sqrt = out$vectors %*% diag(out$values^0.5) %*% t(out$vectors)
X = Z %*% S.sqrt
# oracle precision matrix
Omega = matrix(0.9, ncol = 10, nrow = 10)
diag(Omega = 1)
# generate covariance matrix
S = qr.solve(Omega)
# generate data
Z = matrix(rnorm(10*1000), nrow = 1000, ncol = 10)
out = eigen(S, symmetric = TRUE)
S.sqrt = out$vectors %*% diag(out$values^0.5) %*% t(out$vectors)
X = Z %*% S.sqrt
# generate eigen values
eigen = c(rep(1000, 5, rep(1, 100 - 5)))
# randomly generate orthogonal basis (via QR)
Q = matrix(rnorm(100*100), nrow = 100, ncol = 100) %>% qr %>% qr.Q
# generate covariance matrix
S = Q %*% diag(eigen) %*% t(Q)
# generate data
Z = matrix(rnorm(100*50), nrow = 50, ncol = 100)
out = eigen(S, symmetric = TRUE)
S.sqrt = out$vectors %*% diag(out$values^0.5) %*% t(out$vectors)
X = Z %*% S.sqrt
# generate eigen values
eigen = c(rep(1000, 5, rep(1, 10 - 5)))
# randomly generate orthogonal basis (via QR)
Q = matrix(rnorm(10*10), nrow = 10, ncol = 10) %>% qr %>% qr.Q
# generate covariance matrix
S = Q %*% diag(eigen) %*% t(Q)
# generate data
Z = matrix(rnorm(10*50), nrow = 50, ncol = 10)
out = eigen(S, symmetric = TRUE)
S.sqrt = out$vectors %*% diag(out$values^0.5) %*% t(out$vectors)
X = Z %*% S.sqrt
# generate covariance matrix
# (can confirm inverse is tri-diagonal)
S = matrix(0, nrow = 100, ncol = 100)
for (i in 1:100){
for (j in 1:100){
S[i, j] = 0.7^abs(i - j)
}
}
# generate data
Z = matrix(rnorm(10*50), nrow = 50, ncol = 10)
out = eigen(S, symmetric = TRUE)
S.sqrt = out$vectors %*% diag(out$values^0.5) %*% t(out$vectors)
X = Z %*% S.sqrt